Cdc42, Par6, and aPKC Regulate Arp2/3-Mediated Endocytosis to Control Local Adherens Junction Stability
نویسندگان
چکیده
BACKGROUND By acting as a dynamic link between adjacent cells in a monolayer, adherens junctions (AJs) maintain the integrity of epithelial tissues while allowing for neighbor exchange. Although it is not currently understood how this combination of AJ stability and plasticity is achieved, junctionally associated actin filaments are likely to play a role, because actin-based structures have been implicated in AJ organization and in the regulation of junctional turnover. RESULTS Here, through exploring the role of actin cytoskeletal regulators in the developing Drosophila notum, we have identified a critical role for Cdc42-aPKC-Par6 in the maintenance of AJ organization. In this system, the loss or inhibition of Cdc42-aPKC-Par6 leads to junctional discontinuities, the formation of ectopic junctional structures, and defects in apical actin cytoskeletal organization. Affected cells also undergo progressive apical constriction and, frequently, delamination. Surprisingly, this Cdc42-aPKC-Par6-dependent regulation of junctional stability was found to be independent of several well-known targets of Cdc42-aPKC-Par6: Baz, Lgl, Rac, and SCAR. However, similar AJ defects are observed in wasp, arp2/3, and dynamin mutant cells, suggesting a requirement for actin-mediated endocytosis in the maintenance of junctional stability downstream of Cdc42. This was confirmed in endocytosis assays, which revealed a requirement for Cdc42, Arp2/3, and Dynamin for normal rates of E-cadherin internalization. CONCLUSIONS By focusing on the molecular mechanisms required to maintain an epithelium, this analysis reveals a novel role for the epithelial polarity machinery, Cdc42-Par6-aPKC, in local AJ remodeling through the control of Arp2/3-dependent endocytosis.
منابع مشابه
Drosophila Cip4 and WASp Define a Branch of the Cdc42-Par6-aPKC Pathway Regulating E-Cadherin Endocytosis
BACKGROUND Integral to the function and morphology of the epithelium is the lattice of cell-cell junctions known as adherens junctions (AJs). AJ stability and plasticity relies on E-Cadherin exocytosis and endocytosis. A mechanism regulating E-Cadherin (E-Cad) exocytosis to the AJs has implicated proteins of the exocyst complex, but mechanisms regulating E-Cad endocytosis from the AJs remain le...
متن کاملRho1 regulates adherens junction remodeling by promoting recycling endosome formation through activation of myosin II
Once adherens junctions (AJs) are formed between polarized epithelial cells they must be maintained because AJs are constantly remodeled in dynamic epithelia. AJ maintenance involves endocytosis and subsequent recycling of E-cadherin to a precise location along the basolateral membrane. In the Drosophila pupal eye epithelium, Rho1 GTPase regulates AJ remodeling through Drosophila E-cadherin (DE...
متن کاملAssembly of Epithelial Tight Junctions Is Negatively Regulated by Par6
Epithelial cells display apical-basal polarity, and the apical surface is segregated from the basolateral membranes by a barrier called the tight junction (TJ). TJs are constructed from transmembrane proteins that form cell-cell contacts-claudins, occludin, and junctional adhesion molecule (JAM)-plus peripheral proteins such as ZO-1. The Par proteins (partitioning-defective) Par3 and Par6, plus...
متن کاملCdc42 antagonizes Rho1 activity at adherens junctions to limit epithelial cell apical tension
In epithelia, cells are arranged in an orderly pattern with a defined orientation and shape. Cadherin containing apical adherens junctions (AJs) and the associated actomyosin cytoskeleton likely contribute to epithelial cell shape by providing apical tension. The Rho guanosine triphosphatases are well known regulators of cell junction formation, maintenance, and function. Specifically, Rho prom...
متن کاملDbl3 drives Cdc42 signaling at the apical margin to regulate junction position and apical differentiation
Epithelial cells develop morphologically characteristic apical domains that are bordered by tight junctions, the apical-lateral border. Cdc42 and its effector complex Par6-atypical protein kinase c (aPKC) regulate multiple steps during epithelial differentiation, but the mechanisms that mediate process-specific activation of Cdc42 to drive apical morphogenesis and activate the transition from j...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 18 شماره
صفحات -
تاریخ انتشار 2008